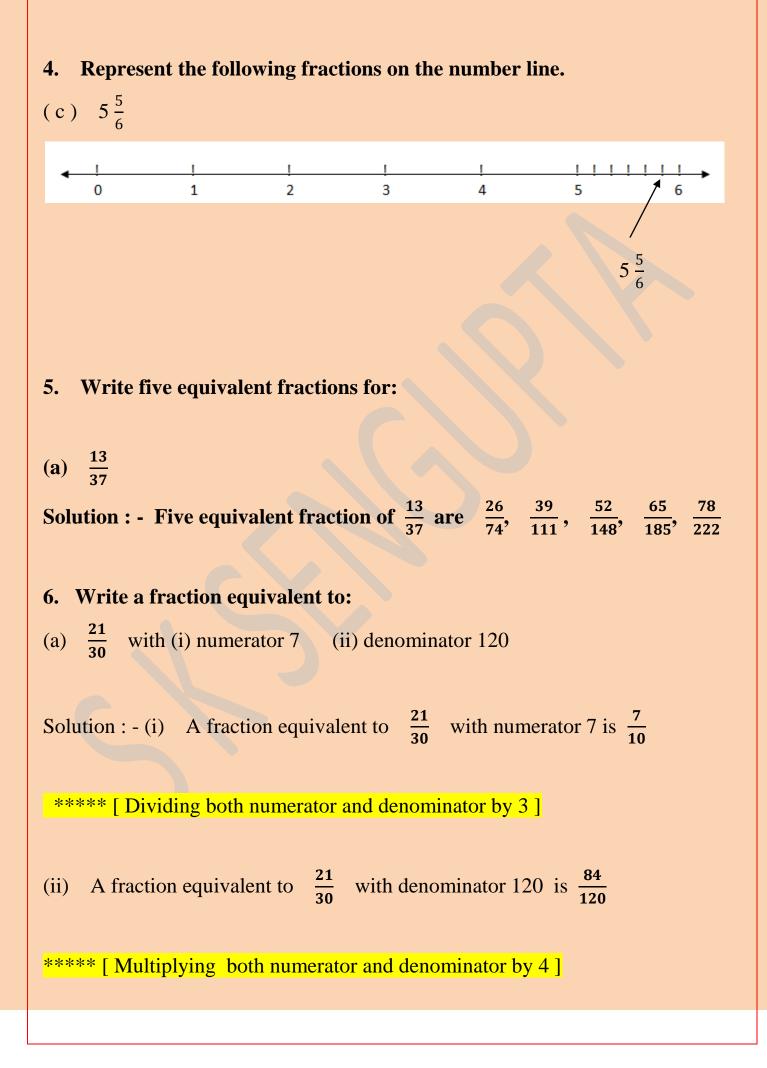
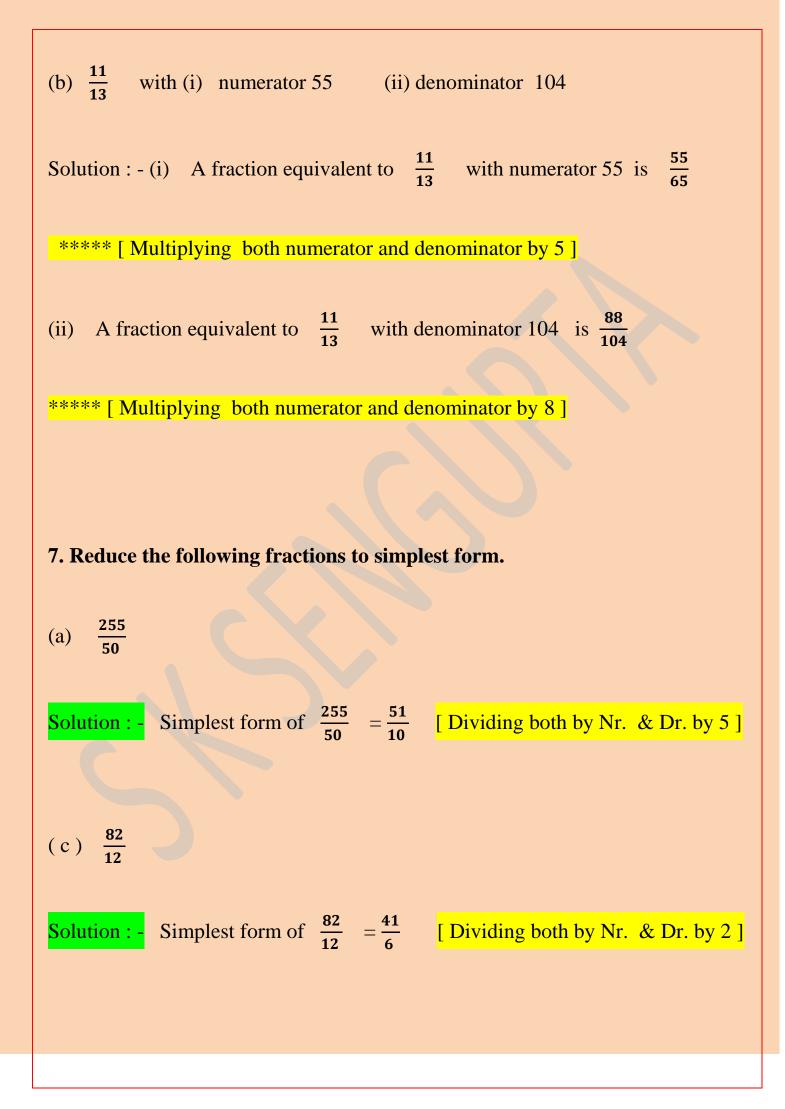
## EXERCISE : 5.2

## 1. Write the following as fractions.

(a)  $56 \div 17$  (b)  $23 \div 32$  (c)  $9 \div 126$  (d)  $109 \div 200$ Solution :

(a) 56 ÷ 17 =  $\frac{56}{17}$ 


## 2. Write the following as division facts.


$$(a) \frac{83}{100} = 83 \div 100$$

**3.** Between which two whole numbers would  $2\frac{1}{15}$  lie? In how many parts should the number line between these numbers be divided to represent  $2\frac{1}{15}$ ? **Solution : -**

 $2\frac{1}{15}$  lies between 2 and 3.

To represent  $2\frac{1}{15}$  on the number line we have to divide 2 to 3 in to 15 equal parts.





8. Fill in the boxes with >, < or = symbol. (a)  $\frac{32}{57}$   $\frac{21}{57}$ (b)  $\frac{83}{97}$   $\frac{83}{79}$ (c)  $\frac{57}{52}$   $\frac{12}{13}$ (d)  $\frac{7}{9}$   $\boxed{11}$   $\frac{11}{17}$ (e)  $\frac{10}{19}$   $\frac{20}{38}$ <u>3</u> 8 (f)  $\frac{1}{6}$ Solution :-(a)  $\frac{32}{57}$  > 21 57 (b)  $\frac{83}{97} < \frac{83}{79}$ (c)  $\frac{57}{52} > \frac{12}{13}$ (d)  $\frac{7}{9}$  >  $\frac{11}{17}$ 

(e) 
$$\frac{10}{19} = \frac{20}{38}$$

(f) 
$$\frac{1}{6}$$
 <  $\frac{3}{8}$ 

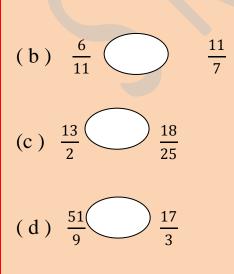
## 9. Arrange the following fractions in ascending order.

(a) 
$$\frac{5}{7}$$
,  $\frac{16}{7}$ ,  $\frac{1}{7}$ ,  $\frac{11}{7}$ ,  $\frac{11}{7}$ ,  $\frac{18}{7}$ ,  $\frac{2}{7}$ 

Solution : - Here denominators of all the fractions are same, so the fraction with smaller numerator is smaller.

Here 1 < 2 < 5 < 11 < 16 < 18

Therefore the required ascending order is  $\frac{1}{7}$ ,  $\frac{2}{7}$ ,  $\frac{5}{7}$ ,  $\frac{11}{7}$ ,  $\frac{16}{7}$ ,  $\frac{18}{7}$ 


(b)  $\frac{7}{8}$ ,  $\frac{7}{69}$ ,  $\frac{7}{6}$ ,  $\frac{7}{19}$ ,  $\frac{7}{12}$ 

Solution : - Here numerators of all the fractions are same, so the fraction with smaller denominator is greater.

Here 6 < 8 < 12 < 19 < 69Therefore the required ascending order is  $\frac{7}{69}$ ,  $\frac{7}{19}$ ,  $\frac{7}{12}$ ,  $\frac{7}{8}$ ,  $\frac{7}{6}$  10. Arrange the following fractions in descending order.

$$(c) \frac{3}{8}, \frac{5}{16}, \frac{7}{4}, \frac{6}{64}$$
  
Solution : -

Here LCM of 8, 16, 4 and 64 = 64 Now we will convert all the four fractions  $\frac{3}{8}$ ,  $\frac{5}{16}$ ,  $\frac{7}{4}$ ,  $\frac{6}{64}$  to their respective equivalent fractions with denominator 64 as –  $\frac{3}{8} = \frac{3 \times 8}{8 \times 8} = \frac{24}{64}$ ,  $\frac{5}{16} = \frac{5 \times 4}{16 \times 4} = \frac{20}{64}$   $\frac{7}{4} = \frac{7 \times 16}{4 \times 16} = \frac{112}{64}$ ,  $\frac{6}{64} = \frac{6 \times 1}{64 \times 1} = \frac{6}{64}$ Now, 112 > 24 > 20 > 6 Therefore the required descending order is  $-\frac{7}{4}$ ,  $\frac{3}{8}$ ,  $\frac{5}{16}$ ,  $\frac{6}{64}$ 11. Without finding LCM, fill in the blanks with >, < or = symbol. (a)  $\frac{1}{7}$   $\int_{-\frac{3}{5}}^{\frac{3}{5}}$ 



Solution :  
(a) 
$$\frac{1}{7}$$
  $\checkmark$   $\frac{3}{5}$  [Here  $1 \times 5 < 3 \times 7$ ]  
(b)  $\frac{6}{11}$   $\checkmark$   $\frac{11}{7}$  [Here  $6 \times 7 < 11 \times 11$ ]  
(c)  $\frac{13}{2}$   $\checkmark$   $\frac{18}{25}$  [Here  $13 \times 25 > 2 \times 18$ ]  
(d)  $\frac{51}{9}$   $=$   $\frac{17}{3}$  [Here  $51 \times 3 = 9 \times 17$ ]  
12. Correct the error, if any, in the following order :  
 $\frac{3}{5} > \frac{7}{4} > \frac{5}{6} > \frac{5}{8}$   
Solution :  
The correct order is -  
 $\frac{7}{4} > \frac{5}{6} > \frac{5}{8} > \frac{3}{5}$   
Some more examples :  
1. Compare the following fractions :  
a.  $\frac{5}{8} \bigcirc \frac{1}{5}$  b.  $\frac{2}{7} \bigcirc \frac{5}{7}$  c.  $2 \bigcirc \frac{1}{11}$  d.  $\frac{2}{9} \bigcirc \frac{7}{5}$   
Solution : a.  $\frac{5}{8} > \frac{1}{5}$  (Here  $5 \times 5 > 1 \times 8$ )  
b.  $\frac{2}{7} < \frac{5}{7}$  (Here  $2 \times 7 < 7 \times 5$ )  
c.  $2 > \frac{1}{11}$   
(Here any whole number is greater than any proper fraction)  
d.  $\frac{2}{9} < \frac{7}{5}$  (Here  $2 \times 5 < 7 \times 9$ )

Arrange the fractions  $\frac{2}{3}$ ,  $\frac{4}{5}$ ,  $\frac{1}{8}$ ,  $\frac{5}{9}$  in ascending order : 2. Solution: Here LCM of 3, 5, 8 and 9 = 360. Now we will convert all the four fractions  $\frac{2}{3}$ ,  $\frac{4}{5}$ ,  $\frac{1}{8}$  and  $\frac{5}{9}$  to their respective equivalent fractions with denominator 360 as - $\frac{2}{3} = \frac{2 \times 120}{3 \times 120} = \frac{240}{360}$ ,  $\frac{4}{5} = \frac{4 \times 72}{5 \times 72} = \frac{288}{360}$  $\frac{1}{8} = \frac{1 \times 45}{8 \times 45} = \frac{45}{360}$ ,  $\frac{5}{9} = \frac{5 \times 40}{9 \times 40} = \frac{200}{360}$ Here 45 < 200 < 240 < 288 The required ascending order is  $\frac{1}{8} < \frac{5}{9} < \frac{2}{3} < \frac{4}{5}$ Arrange the following fractions  $\frac{1}{6}$ ,  $\frac{2}{9}$ ,  $\frac{4}{5}$ ,  $\frac{2}{3}$  in descending order 3. Solution: Here LCM of 6, 9, 5 and 3 = 90. Now we will convert all the four fractions  $\frac{1}{6}$ ,  $\frac{2}{9}$ ,  $\frac{4}{5}$ ,  $\frac{2}{3}$  to their respective equivalent fractions with denominator 90 as - $\frac{1}{6} = \frac{1 \times 15}{6 \times 15} = \frac{15}{90}$ ,  $\frac{2}{9} = \frac{2 \times 10}{9 \times 10} = \frac{20}{90}$  $\frac{4}{5} = \frac{4 \times 18}{5 \times 18} = \frac{72}{90}$ ,  $\frac{2}{3} = \frac{2 \times 30}{3 \times 30} = \frac{60}{90}$ Here 72 > 60 > 20 > 15

So the required descending order is  $:\frac{4}{5} > \frac{2}{3} > \frac{2}{9} > \frac{1}{6}$