Science

((Chapter 12)(Electricity)
Class - 10

EExercises

Question 1:

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R^{\prime}, then the ratio R / R^{\prime} is -
(a) $1 / 25$
(b) $1 / 5$
(c) 5
(d) 25

fAnswer 1:

Resistance of a piece of wire is directly proportional to its length. If the piece of wire has a resistance R and the wire is cut into five equal parts.
The resistance of each part $=\mathrm{R} / 5$

All the five parts are connected in parallel. Hence, equivalent resistance (R^{\prime}) is given as

$$
\begin{gathered}
\frac{1}{R^{\prime}}=\frac{1}{\mathrm{R} / 5}+\frac{1}{\mathrm{R} / 5}+\frac{1}{\mathrm{R} / 5}+\frac{1}{\mathrm{R} / 5}+\frac{1}{\mathrm{R} / 5} \\
\Rightarrow \frac{1}{R}=\frac{5}{\mathrm{R}}+\frac{5}{\mathrm{R}}+\frac{5}{\mathrm{R}}+\frac{5}{\mathrm{R}}+\frac{5}{\mathrm{R}}=\frac{25}{\mathrm{R}} \\
\Rightarrow R^{\prime}=\frac{R}{25} \\
\Rightarrow \frac{R^{\prime}}{R}=25
\end{gathered}
$$

Hence, the option (d) is correct.

Question 2:

Which of the following terms does not represent electrical power in a circuit?
(a) $I^{2} R$
(b) IR^{2}
(c) VI
(d) V^{2} / R

Eanswer 2:

We know that electric power is given by $\mathrm{P}=\mathrm{VI}$
So, the option (c) is correct.

According to Ohm's law, $\mathrm{V}=\mathrm{IR}$

Science

(Chapter 12)(Electricity)
Class - 10
Now putting the value of V from (ii) in (i), we get
Power $\mathrm{P}=(\mathrm{IR}) \times \mathrm{I}=\mathrm{I}^{2} \mathrm{R}$
So, the option (a) is correct.
Now putting the value of I from (ii) in (i), we get
Power $\mathrm{P}=\mathrm{V}(\mathrm{V} / \mathrm{R})=\mathrm{V}^{2} / \mathrm{R}$
So, the option (d) is correct.
Hence, the option (b) does not represent electrical power in a circuit.

Question 3:

An electric bulb is rated 220 V and 100 W . When it is operated on 110 V , the power consumed will be -
(a) 100 W
(b) 75 W
(c) 50 W
(d) 25 W

Answer 3:
Energy consumed by bulb $=P=\frac{V^{2}}{R}$

$$
\Rightarrow R=\frac{V^{2}}{\mathrm{P}}
$$

Here, $\mathrm{V}=220 \mathrm{~V}$ and $\mathrm{P}=100 \mathrm{~W}$

$$
R=\frac{(220)^{2}}{100}=484 \Omega
$$

The resistance of the bulb remains constant if the supply voltage is reduced to 110 V . If the bulb is operated on 110 V , then the energy consumed by it is given by the expression for power

$$
P=\frac{V^{2}}{\mathrm{R}}=\frac{(110)^{2}}{484}=\frac{12100}{484}=25
$$

Hence, the option (d) is correct.

Science

(Chapter 12)(Electricity)
Class - 10

Question 4:

Two conducting wires of the same material and of equal lengths and equal diameters are first connected in series and then parallel in a circuit across the same potential difference. The ratio of heat produced in series and parallel combinations would be -
(a) $1: 2$
(b) $2: 1$
(c) $1: 4$
(d) $4: 1$

Answer 4:

feat produced in the circuit is inversely proportional to the resistance R. Let R_{S} and R_{P} be the equivalent resistances of the wires if connected in series and parallel respectively. Let R be the resistance of each wire.

If the resistors are connected in parallel, the net resistance is given by

$$
\begin{aligned}
\frac{1}{R_{P}} & =\frac{1}{R}+\frac{1}{R} \\
\Rightarrow & \frac{1}{R_{P}}
\end{aligned}=\frac{2}{R}, ~=\frac{R}{2} \Rightarrow R_{P}=\frac{1}{2}
$$

If the resistors are connected in series, the net resistance is given by

$$
R_{s}=R+R=2 R
$$

Hence, for same potential difference V, the ratio of heat produced in the circuit is given by

$$
\frac{H_{S}}{H_{P}}=\frac{V^{2}{ }_{s} t}{\frac{V^{2}}{R_{P}} t}=\frac{R_{P}}{R_{s}}=\frac{R / 2}{2 R}=4=1: 4
$$

Therefore, the ratio of heat produced in series and parallel combinations is 1:4.
Hence, the option (c) is correct.

Science

(Chapter 12)(Electricity)
Class - 10

Question 5:

How is a voltmeter connected in the circuit to measure the potential difference between two points?

Answer 5:

to measure the potential difference, a voltmeter should be connected in parallel.

Question 6:

A copper wire has diameter 0.5 mm and resistivity of $1.6 \times 10^{-8} \Omega \mathrm{~m}$. What will be the length of this wire to make its resistance 10Ω ? How much does the resistance change if the diameter is doubled?

Answer 6:

Fesistance (R) of a copper wire of length l and cross-section A is given by the expression,

$$
R=\rho_{\underline{A}}^{l}
$$

Where, ρ is resistivity of copper $=1.6 \times 10^{-8} \Omega \mathrm{~m}$
$\mathrm{R}=10 \Omega$, radius of wire $r=0.5 / 2 \mathrm{~mm}=0.25 \mathrm{~mm}=0.00025 \mathrm{~m}$
$A=\pi r^{2}=3.14 \times(0.00025)^{2}=0.000000019625 \mathrm{~m}^{2}$

$$
\Rightarrow l=\frac{R A}{\rho}=\frac{10 \times 0.000000019625}{1.6 \times 10^{-8}}=122.72
$$

If the diameter (radius) is doubled, the new radius $r=0.5 \mathrm{~mm}=0.0005 \mathrm{~m}$
$A=\pi r^{2}=3.14 \times(0.0005)^{2}=0.000000785 \mathrm{~m}^{2}$
So, the new resistance will be

$$
R^{\prime}=\frac{d}{A}=\frac{1.6 \times 10^{-8} \times 122.72}{0.000000785}=2.5 \Omega
$$

Science

((Chapter 12)(Electricity)
Class - 10

Now

$$
\begin{gathered}
\frac{R^{\prime}}{R}=\frac{2.5}{10} \frac{1}{4} \frac{1}{4} \\
\Rightarrow R^{\prime}=\frac{1}{4} R
\end{gathered}
$$

Hence, the new resistance will become $1 / 4$ times the original resistance.

Question 7:

The values of current I flowing in a given resistor for the corresponding values of potential difference V across the resistor are given below -
I (amperes) 0.5
1.0
2.0
3.0
4.0
V (volts) $\quad 1.6$
3.4
6.7
10.2
13.2

Plot a graph between V and I and calculate the resistance of that resistor.

EuAnswer 7:

The plot between voltage and current is called VI characteristic. The voltage is plotted on x-axis and current is plotted on y-axis.

The slope of the line gives the value of resistance (R)

$$
\begin{gathered}
\text { slope }=\frac{1}{R}=\frac{B C}{A C}=\frac{2}{6.8} \\
\Rightarrow R=\frac{6.8}{2}=3.4 \Omega
\end{gathered}
$$

Science

(Chapter 12)(Electricity)
Class - 10

Question 8:

When a 12 V battery is connected across an unknown resistor, there is a current of 2.5 mA in the circuit. Find the value of the resistance of the resistor.

Answer 8:

According to Ohm's law, V = IR

$$
\Rightarrow R=\stackrel{V}{I}
$$

Here, $\mathrm{V}=12 \mathrm{~V}$ and $\mathrm{I}=2.5 \mathrm{~mA}=0.0025 \mathrm{~A}$
Therefore,

$$
R=\begin{gathered}
12 \\
\underline{0.0025}
\end{gathered}=4800 \Omega=4.8 \mathrm{k} \Omega
$$

Question 9:

A battery of 9 V is connected in series with resistors of $0.2 \Omega, 0.3 \Omega, 0.4 \Omega, 0.5$ Ω and 12Ω, respectively. How much current would flow through the 12Ω resistor?

Answer 9:

Fotal resistance of resistors when connected in series is given by

$$
\begin{gathered}
R=R_{1}+R_{2}+R_{3}+R_{4}+R_{5} \\
\Rightarrow R=0.2 \Omega+0.3 \Omega+0.4 \Omega+0.5 \Omega+12 \Omega=13.4 \Omega
\end{gathered}
$$

According to Ohm's law, $\mathrm{V}=\mathrm{IR}$

$$
\Rightarrow I=\begin{gathered}
V \\
R
\end{gathered}=\begin{gathered}
9 \\
{ }_{13.4}
\end{gathered}=0.67 \mathrm{~A}
$$

There is no current division occurring in a series circuit. So, the current through the 12Ω resistor will be same as 0.67 A .

Science

(Chapter 12)(Electricity)
Class - 10

Question 10:

How many 176Ω resistors (in parallel) are required to carry 5 A on a 220 V line?
Answer 10:
Cet the total number of resistors be x.

Given that:

Current $\mathrm{I}=5 \mathrm{~A}$ and Potential Difference $\mathrm{V}=220 \mathrm{~V}$

According to Ohm's law, $\mathrm{V}=\mathrm{IR}$

$$
\Rightarrow R=\frac{V}{I}=\frac{220}{5}=44 \Omega
$$

Now for x number of resistors of resistance 176Ω, the equivalent resistance of the resistors connected in parallel is 44Ω.

$$
\begin{gathered}
\frac{1}{44}=\frac{1}{176}+\frac{1}{176}+\frac{1}{176}+\frac{1}{176}+. . \text { toxtimes } \\
\Rightarrow \frac{1}{44}=\frac{x}{176} \\
\Rightarrow x=\frac{176}{44}=4
\end{gathered}
$$

Therefore, 4 resistors of 176Ω are required to draw the given amount of current.

Question 11:

Show how you would connect three resistors, each of resistance 6Ω, so that the combination has a resistance of (i) 9Ω, (ii) 4Ω.

EAnswer 11:

(i). To get total 9Ω resistance from three 6Ω resistors, we should connect two resistors in parallel and the third resistor in series with the resultant. The combination is given as follows:

Science

((Chapter 12)(Electricity)
Class - 10

Total resistance in parallel is given by

$$
\begin{gathered}
\frac{1}{R_{12}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
\Rightarrow \frac{1}{R_{12}}=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3} \\
\Rightarrow R_{12}=3 \Omega
\end{gathered}
$$

Now R_{12} and 6Ω are connected in series, so the net resistance is given by

$$
R=R_{12}+6 \Omega=3 \Omega+6 \Omega=9 \Omega
$$

(ii). To get total 4Ω resistance from three 6Ω resistors, we should connect two resistors in series and the third resistor in parallel with the resultant. The combination is given as follows:

To \qquad

$$
R_{12}=R_{1}+R_{2}=6 \Omega+6 \Omega=12 \Omega
$$

Science

(Chapter 12)(Electricity)

Class - 10

Now R_{12} and 6Ω are connected in parallel, so the net resistance is given by

$$
\begin{gathered}
\frac{1}{R}=\frac{1}{R_{12}}+\frac{1}{6} \\
\Rightarrow \frac{1}{R}=\frac{1}{12}+\frac{1}{6}=\frac{3}{12}=\frac{1}{4} \\
\Rightarrow R=4 \Omega
\end{gathered}
$$

Question 12:

Several electric bulbs designed to be used on a 220 V electric supply line, are rated 10 W . How many lamps can be connected in parallel with each other across the two wires of 220 V line if the maximum allowable current is 5 A ?

EAnswer 12:

For one bulb:
Power $\mathrm{P}=10 \mathrm{~W}$ and Potential difference $\mathrm{V}=220 \mathrm{~V}$
Using the relation for R , we have

$$
R=\frac{V^{2}}{P}=\frac{(220)^{2}}{10}=4840 \Omega
$$

Let the total number of bulbs be x.
Given that:
Current $\mathrm{I}=5 \mathrm{~A}$ and Potential Difference $\mathrm{V}=220 \mathrm{~V}$

According to Ohm's law, $\mathrm{V}=\mathrm{IR}$

$$
\Rightarrow R=\frac{V}{I}=\frac{220}{5}=44 \Omega
$$

Now, for x number of bulbs of resistance 176Ω, the equivalent resistance of the resistors connected in parallel is 44Ω.

$$
\frac{1}{44}=\frac{1}{4840}+\frac{1}{4840}+\frac{1}{4840}+. . \text { toxtimes }
$$

Science

Chapter 12)(Electricity)
Class - 10

$$
\begin{gathered}
\Rightarrow \begin{array}{c}
1 \\
\underline{44}
\end{array}=\begin{array}{c}
x \\
\underline{4840}
\end{array} \\
\Rightarrow x=\frac{4840}{44}=110
\end{gathered}
$$

Therefore, 110 bulbs of 4840Ω are required to draw the given amount of current.

Question 13:

A hot plate of an electric oven connected to a 220 V line has two resistance coils A and B , each of 24Ω resistance, which may be used separately, in series, or in parallel. What are the currents in the three cases?

EnAnswer 13:

Given that:
Potential difference $\mathrm{V}=220 \mathrm{~V}$ and resistance of each coil $\mathrm{R}=24 \Omega$

When the coil is used separately, the current in the coil is given by

$$
I \stackrel{V}{=} R=\frac{220}{24}=\frac{55}{6} 9.16 \mathrm{~A}
$$

When the two coils are connected in series, the net resistance is given by

$$
R=R_{1}+R_{2}=24 \Omega+24 \Omega=48 \Omega
$$

Now, the current in the coil is given by

$$
I=\frac{V}{R}=\frac{220}{48}=\frac{55}{12}=4.58 \mathrm{~A}
$$

When the two coils are connected in parallel, the net resistance is given by

$$
\frac{1}{R}=\frac{1}{24}+\frac{1}{24}=\frac{2}{24}=\frac{1}{12}
$$

Science

(Chapter 12)(Electricity)
Class - 10

$$
\Rightarrow R=12 \Omega
$$

Now, the current in the coil is given by

$$
\stackrel{V}{I_{R}} \stackrel{220}{12}=\frac{55}{3}=18.33 \mathrm{~A}
$$

Question 14:

Compare the power used in the 2Ω resistor in each of the following circuits:
(i) a 6 V battery in series with 1Ω and 2Ω resistors, and (ii) a 4 V battery in parallel with 12Ω and 2Ω resistors.

EAnswer 14:

Given that:
Potential difference, $V=6 \mathrm{~V}$
(i) 1Ω and 2Ω resistors are connected in series. Therefore, equivalent resistance of the circuit, $R=1+2=3 \Omega$
According to Ohm's law,
$V=I R$

$$
\Rightarrow I=\frac{V}{R}=\frac{6}{3}=2 \mathrm{~A}
$$

In series combination, the current in the circuit remains constant. Therefore power is given by

$$
P=I^{2} R=(2)^{2} \times 2=8 \mathrm{~W}
$$

(ii) 1Ω and 2Ω resistors are connected in parallel.

$$
\Rightarrow I=\frac{{ }_{R}}{}=\frac{}{3}=2 \mathrm{~A}
$$

In parallel combination, the voltage in the circuit remains constant. Therefore power is given by

$$
P=\frac{V^{2}}{R}=\frac{4^{2}}{2}=8 \mathrm{~W}
$$

Hence, in both the cases power remains same as 8 W .

Science

(Chapter 12)(Electricity)
Class - 10

Question 15:

Two lamps, one rated 100 W at 220 V , and the other 60 W at 220 V , are connected in parallel to electric mains supply. What current is drawn from the line if the supply voltage is 220 V ?

Answer 15:

for the lamp one:
Power $\mathrm{P}_{1}=100 \mathrm{~W}$ and Potential difference $\mathrm{V}=220 \mathrm{~V}$
Therefore,

$$
I_{1}=\frac{P_{1}}{V}=\frac{100}{220}=0.455 \mathrm{~A}
$$

For the lamp two:
Power $\mathrm{P}_{2}=60 \mathrm{~W}$ and Potential difference $\mathrm{V}=220 \mathrm{~V}$
Therefore,

$$
I_{2}=\frac{P_{2}}{V}=\frac{60}{220}=0.273 \mathrm{~A}
$$

So, the net current drawn from the supply is given by

$$
I=I_{1}+I_{2}=0.455+0.273=0.728 \mathrm{~A}
$$

Question 16:

Which uses more energy, a 250 W TV set in 1 hr , or a 1200 W toaster in 10 minutes?

EAnswer 16:

Energy consumed by an electrical appliance is given by $\mathrm{H}=\mathrm{Pt}$
For the TV set:
Power $\mathrm{W}=250 \mathrm{~W}$ and time $\mathrm{t}=1$ hour $=3600$ seconds
So, energy consumed $\mathrm{H}=250 \times 3600=900000 \mathrm{~J}$
For the toaster:
Power $\mathrm{W}=1200 \mathrm{~W}$ and time $\mathrm{t}=10$ minutes $=600$ seconds
So, energy consumed $\mathrm{H}=1200 \times 600=720000 \mathrm{~J}$

Hence, TV set uses more energy than toaster.

Science

(Chapter 12)(Electricity)

Class - 10

Question 17:

An electric heater of resistance 8Ω draws 15 A from the service mains 2 hours. Calculate the rate at which heat is developed in the heater.
Answer 17:
Aeat developed in the heater is given by $\mathrm{H}=\mathrm{I}^{2} \mathrm{Rt}$
Where, $\mathrm{I}=15 \mathrm{~A}, \mathrm{R}=8 \Omega$ and time $\mathrm{t}=2$ hours
The rate at which heat is developed is given by

$$
H=\frac{I^{2} R t}{t}=I^{2} R=(15)^{2} \times 8=1800 \mathrm{~J} / \mathrm{s}
$$

Question 18:

Explain the following.
a) Why is the tungsten used almost exclusively for filament of electric lamps?
b) Why are the conductors of electric heating devices, such as bread-toasters and electric irons, made of an alloy rather than a pure metal?
c) Why is the series arrangement not used for domestic circuits?
d) How does the resistance of a wire vary with its area of cross-section?
e) Why are copper and aluminium wires usually employed for electricity transmission?

EAnswer 18:

a) The melting point and resistivity of tungsten are very high. It does not burn readily at a high temperature. The electric lamps glow at very high temperatures. Hence, tungsten is mainly used as heating element of electric bulbs.
b) The conductors of electric heating devices such as bread toasters and electric irons are made of alloy because resistivity of an alloy is more than that of metals. It produces large amount of heat and do not burn easily.
c) There is voltage division in series circuits. Each component of a series circuit receives a small voltage for a large supply voltage. As a result, the amount of current decreases and the device becomes hot. Hence, series arrangement is not used in domestic circuits.

Science

(Chapter 12)(Electricity)

Class - 10

d) Resistance (R) of a wire is inversely proportional to its area of cross-section (A):

$$
R \propto \begin{aligned}
& 1 \\
& \underline{A}
\end{aligned}
$$

f) Copper and aluminium wires have low resistivity. They are good conductors of electricity. Hence, they are usually employed for electricity transmission.

