

 Lists

 Lists are mutable sequences of python.

 We can change list elements.

 It can contain values of mixed datatypes.

 Craeting List

Lists are formed by placing comma –separated list of expressions in square

brackets.

Ex:- [2,3,5]

 [‘a’,’e’,’i’]

 Types of Lists

1. The empty list :- It is equivalent of 0 or ‘ ’.

 An empty list can be created as :- L=list()

2. Long lists :- A long list contains many elements.

 Ex:- [1,2,3,4,5,6,7,6,56,4,4,5,6,6,7,7,,72,3,5,8,7,6,5

 3,6,4,7,5,89,6,9,5,5,9,]

3. Nested lists :- A list can have an element in it, which is itself is

 a list. Such a list is called nested list.

 ex:- l = [1,2,[5,6],7]

Creating list from existing sequences

It can be done by l=list(<sequence>).

 Ex:- L =list(‘hello’)

 print(L)

Output :- [‘h’,’e’,’l’,’l’,’o’]

eval() function

 It can be used to evaluate and return the result of an expression given as

string.

 Ex:- eval(‘2’ + ‘5’) # to be corrected

 => 25

 Length :- Function lel(L) returns the number of items(count) in the list L.

 Ex:- l= [1,2,3]

 len(l) => 3

 Indexing a list/ Accessing individual element

L[i] returns the item at index I (the first item has index 0), and

L[I,j] return a new list, containing the objects at indexes between I and j

(excluding index j).

Ex:- l= [1,2,3,4,5,6]

 l[0:3] => [1,2,3]

 l[1:5:2] => [2,4]

Membership operators

‘in’ – it tells if an element is present in the list or not.

 ‘not in ’ – just opposite of ‘in’

 L=[1,2,3]

 2 in L => True

Concatenation and replication operators

+ :- It adds one list to the end of other.

 l1=[1,2,3] l2 = [6,7]

 l1 + l2 => [1,2,3,6,7]

* :- It repeats a list.

 l1 *3 =>[1,2,3,1,2,3,1,2,3]

Traversing a list

To traverse a list ‘for’ loop is used.

 Syntax :- for <item> in <list>

 process each item here

 L=[1,2,3]

 for x in L :

 print(x)

Output :- 1

 2

 3

Comparing lists

 L1 = [1,2,3]

 L2 = [1,2,3]

 L3 = [2,4,6]

 L1 ==L2 => True

 L1 == L3 => False

Appending element to a list

 L.append(item)

 ex:- L = [1,2,3]

 L.append(4)

 print(L) => [1,2,3,4]

Updating element of a list

 L[index]= <new value>

 ex:- L = [1,2,3]

 L[2] = 10

 print(L) => [1,2,10]

Deleting element from a list

 L.pop(index) index is optional, if skipped last element is deleted.

 ex:- L = [1,2,3]

 L.pop() => 3

 L.pop(1) => 2

Making true copy of a list

 ex:- L = [1,2,3]

 M = L # now L and M will point to same list

 print(L) => [1,2,10]

 ex:- L = [1,2,3]

 M = L # now L and M will point to same list

 To create copy of list :-

 L= [1,2,3]

 M = list(L)

 L[1] = 10

 print(L) => [1,10,3]

 print(M) => [1,10,3]

Joining Lists

Joining two lists is very easy just like we perform addition, literally :)The

concatenation operator +, when used with two lists, joins two lists.

Eg

>>>lst=[1,3,5]

>>>lst=[6,7,8]

>>>lst1+lst2

[1,3,5,6,7,8] // the +operator concatenates two lists and creates a new list

The + operator when used with lists requires that both the operands must be

of list types. We can not add a number or any other value to alist. For example ,

following expressions will result into error:

 list+number

list+string

>>> lst=[10,12,14]

>>>lst+2 // Type error : can only concatenate list(not”int”) to list

>>>lst+”abc” // type error: can only concatenate list(not”str”) to list

Repeating or Replicating Lists

Like strings we can use * operator to replicate a list specified number of times

Eg

>>> lst1=[1,3,5]

>>>lst*3

[1,3,5, 1,3,5, 1,3,5,]

Like strings, we can only use integer with a * operator when trying to replicate a list

The Len Function

It returns the length of its argument list i.e it returns the number of element in

the passed list. The len() function is a Python standard library function.

Eg

>>>len([1,2,3])

3

>>>list1=[4,2,[9,1],(4,5)]

>>>len(list1)

 4

The List Function

Returns a list created from the passed argument, which should be a sequence

type (string, List, tuple etc)

If no argument is passed , it will create an empty list. It works as per the

following .

Eg

>>> list(“hello”)

[‘h’,’e’,’l’,’l’,’o’] //list created a list from the characters of the passed

string

>>>a=list((34,51,110))

>>>a

[34,51,110]

>>>b=list()

>>>b // List without any argument creates an empty list

[]

>>>c=list({‘a’:101,’b’:201})

>>>c

 [‘a’,’b’] // list() created a list from the keys of the passed dictionary

The index Function

- it returns the index of first matched list item from the list.

 eg:- L = [1,2,3,4]

 L.index(2) => 1

 Eg

>>>L1=[13,18,11,16,18,14]

>>>L1.index(18)

1

>>>L1.index(33)

Valueerror:33 is not in List

The append Function

append() - it adds an item to the end of a list.

 ex:- L = [1,2,3,4]

 L.append(5)

 L => [1,2,3,4,5]

Eg >>>colours=[“red”,”green”,”blue”]

 >>>colours.append(“yellow”)

 >>>colours

[“red”,”green”,”blue”,”Yellow”]

The append() does not return the new list, just modifies the original. To

understand this, consider the following example:

>>> lst=[1,2,3]

>>>lst2=1st.append(12)

>>>lst2

>>>lst

 [1,2,3,12]

The extend Function

extend - method is also used for adding multiple elements(given in the form of

a list) to a list.

 extend() - it adds multiple elements to a list.

 ex:- L1 = [1,2,3,4] L2 = [10,20]

 L1.extend(L2)

 L => [1,2,3,4,10,20]

Difference between append() and extend()

 ex:- L1 = [1,2,3,4] L2 = [10,20]

 L1.append(L2)

 L1 => [1,2,3,4,[10,20]]

 len(L1) => 5

 ex:- L1 = [1,2,3,4] L2 = [10,20]

 L1.extend(L2)

 L1 => [1,2,3,4,10,20]

 len(L1) => 6

The insert() Function

 insert() - it inserts an item at a given position.

 ex:- L = [1,2,3,4]

 L.insert(<pos>, <item>)

 L.insert(1,5)

 L => [1,5,2,3,4]

 L.insert(-5,20)

 L =>[20,1,2,3,4,]

If index is less than 0 item will be added in the beginning of the list

pop() - it removes the item from the list.

 ex:- L = [1,2,3,4]

 L.pop(<index>)

 x = L.pop(1)

 L => [1,3,4]

 x => 2

remove() - it removes the first occurrence of given item from the list.

 ex:- L = [1,2,3,4,1]

 L.remove(1)

 L => [2,3,4,1]

 L.remove(5) => error, element not in list

The pop method removes an individual item and returns it, while remove searches for

an item, and removes the first matching item from the list.

The Clear () Function

This method removes all the items from the list and the list becomes empty list

after this function. This function returns nothing . It is used as per following

format.

List . clear ()

For instance, if we have a list L1 as

>>>L1=[2,3,4,5]

>>>L1.clear() //it will remove all the items from list L1.

>>>L1

Unlike del<lstname> statement clear () removes only the element and not the list

element. After clear (), the list object still exists as an empty.

count() - it returns count of the item in list. If item not found, it return 0.

 ex:- L1 = [1,2,3,4,2]

 L1.count(2) => 2

Eg L=[13,18,20,10,23]

>>>L1.count(18)

2

>>>L1.count(28)

 0

reverse() - it reverse the order of items of list.

 ex:- L = [1,2,3]

 L.reverse()

 L => [3,2,1]

Takes no argument, return no list, reverses the list ‘in place’ and does not

return any thing

>>> t1

[‘e’,’I’,’q’,’a’,’q’,’p’]

>>>t1.reverse()

>>>t1

[‘p’,’q’,’a’,’q’,’I’,’e’]

>>>t2=[3,4,5]

>>>t3=t2.reverse()

>>>t3

>>>t2

 [5,4,4]

sort() - it sorts the list items. By default in increasing order.

 ex:- L = [1,3,2]

 L.sort()

 L => [1,2,3]

to sort a list in decreasing order :-

 L.sort(reverse =True)

 L => [3,2,1]

sorted() - This function takes the name of the list as an argument and returns

a new sorted list with sorted element in it.

Eg

>>> val=[17,24,15,30]

>>> sval=sorted (val)

>>>sval

[15,17,24,30]

>>>rsval=sorted (val, reverse=True)

>>>rsval

[30,24,17,15]

count() - it returns count of the item in list. If item not found, it return 0.

 ex:- L1 = [1,2,3,4,2]

 L1.count(2) => 2

Eg L=[13,18,20,10,23]

>>>L1.count(18)

2

>>>L1.count(28)

 0

