Chapter 7: Querying Using SQL

Ordering Records in Result----order by clause

The result set generated by the SQL SELECT statement is not ordered in any form
by default.

If we want to sort or order the result set, we can use the ORDER BT clause of SQL
SELECT statement as per following format:

Select <comma separated select list> FROM <table>

[WHERE <condition>]

ORDER BY <fieldname> [ASC|DESC][,<fieldname>[ASC|DESC],....];

Keywords ASC and DESC denote the order ---ASC stands for ascending and the
DESC stands for descending .

If we do not specify any order keword ASC or DESC, then by default, the ORDER
BY clause sorts

The result set in ascending order.

Eg select * select *
from data from data
order by marks order by marks ASC;

Ordering Data on Multiple Columns

To order the result set on multiple columns, we can specify the multiple column
names in ORDER by clause along with the desired sort order , i.e as:

Eg Select *
From data
Order by section ASC, marks DESC

Ordering Data on the Basis of an Expression

Some times we need to display the result of a calculation or a mathematical
expression in the result set.

In such case we may want or need to arrange our result set in the order of the
calculated expression.

The ORDER BY clause allows we to include the mathematical expression to order
the result set by it.

To arrange a result set on the basis of a mathematical expression, we should
preferably (through not a necessity but preferably) include the mathematical
expression in the select list so that it becomes easy to comprehend the result :
SELECT rollno, name, grade , section , marks *.35 from data

where marks>70

order by section ASC, marks*0.35 DESC,;

Aggregate Functions

Aggregate functions work upon groups of rows, rather than on single rows , that

is why, these functions are sometimes also called multiple row functions

e AVG
>
>
>

>

YV VYV VY

VYV VY

e MAX

COUNT

This function computes the average of given data.
AVG([DISTINCT| ALL]N)
Return average value of parameter(s) n.

This function counts the number of rows in a given column or expression.
Count({* [DISTINCT | ALL] EXPR})

Return THE NUMBER OF ROWS IN THE QUERY.

If we specify argument expr, this function returns rows where expr is not
null.

We can count either all rows, or only distinct values of expr.

If we specify the *, this function returns all rows, including duplicates and
nulls.

This function returns the maximum value from a given column or
expression.

MAX([DISTINCT|ALL] expr)

Returns maximum value of argument expr.

This function returns the minimum value from a given column or
expression.

MIN([DISTINCT|ALL] expr)

Returns minimum value of expr.

This function returns the sum of values in a given column or expression.
SUM([DISTINCT|ALL] n)
Returns sum of values of n.

Grouping Result—Group BY

» The group by clause combines all those records that have identical values in a
particular field or a group of fields , this grouping results into one summary
record per group if group functions are used with it .

» GROUP BY clause is used in select statements to divide the table into groups.

» Grouping can be done by a column name , or with aggregate functions in
which case the aggregate produces a value for each froup.

» Eg Select job, count(*)

From empl
Group by job;

NESTED GROUPS—GROUPING on multiple Columns

» With GROUP BY clause , we can create groups within groups.
» Such type of grouping is called Nested grouping.
» Eg Select COUNT(EMPNO) from EMPL

GROUP BY dePTNO

PLACING CONDITIONS ON GROUPS---HAVING CLAUSE

» The HAVING clause places conditions on groups in contrast to WHERE clause
that places conditions on individual rows. While WHERE conditions cannot
include aggregate functions, HAVING conditions can do so.

» Eg SELECT

AVG(GROSS),SUM(GROSS)

FROM EMPLOYEE

To display the jobs where the number of employees is less than 3 , we use the
command

SELECT JOB, COUNT(*)
FROM empl
GROUP BY job

HAVING count(*)<3;

NON-GROUP EXPRESSION WITH group by

Eg SELECT ENAME,SUM(SAL)
FROM EMPL

GROUP BY DEPTNO;

