
Chapter 7-DICTIONARIES 

 

Dictionary 

 Dictionaries are mutable unordered collections with elements in the 

form of a key : value pairs. 

 We can change dictionary elements.  

 It can contain values of mixed datatypes. 

Creating dictionary 

Dictionaries are formed by placing key :value pairs 

Ex:- {1:’a’,2:’b’,3:’c’} 

        {‘Name’: ’asha’,’age’:17} 

# keys of a dictionary must be of immutable types 

 

 

 The curly brackets mark the beginning and end of the dictionary. 

 Each entry(key:Value)consists of a pair separated by a colon—

the key and corresponding value is given by writing colon( 

between them, 

 The key –value pairs are separated by commas(,). 

 

 

 rno=[ ] 

 mks=[ ] 

for a in range(4 ): 

  r, m=eval (input(“Enter Roll No., Marks:”)) 

  rno.append(r) 

  mks.append(m) 

d={rno[ 0]:mks[0],rno[1]:mks[1], rno[2]:mks[2], rno[3]:mks[3]} 

print(“Created dictionary”) 

print(d) 

 

Accessing Elements of a Dictionary 

 While accessing elements from a dictionary , we need key .(but in list , the 

elements are accessed through their index) 

 In dictionaries, the elements are accessed through the keys defined in the 

key:value pairs,  

As per the syntax shown below: 

Enter Roll No., Marks :1, 67.5 

Enter Roll No., Marks :2, 45.6 

Enter Roll No., Marks :3, 78.4 

Enter Roll No.,Marks:4,70.5 

Created dictionary 

{1: 67.5, 2: 45.6, 3:78.4, 4:70.5} 

 

 

 

 

 



Lookup:-A dictionary operation that takes a key and finds the corresponding value, is 

called lookup 

Eg  

 

>>> d={“Vowell”:”a”,”Vowel12”:”e”,”Vowel13”:”I”,”Vowel4”:”o”,”Vowel5”:”u”} 

>>>d[“Vowel1”] 

‘a’                                        Accessing elements using their keys;”Vowel1” and 

“Vowel4” 

                                            are the keys used to access corresponding values. 

>>>d[“Vowel4”] 

‘o’ 

 

 

“Traversing a Dictionary” 

 

To traverse a dictionary ‘for’ loop is used. 

  Syntax :- for <item> in <list> 

                       process each item here 

    D = {1:’a’,2:’b’,3:’c’} 

    for x in D                                  

              print(x,’ : ’,D[x])                                               

Output :-    1  : ‘a’ 

                  2  : ‘b’ 

                  3  : ‘c’ 

 

 

 

 

Notice that keys given here are in quotation marks i.e are of string type. 



Accessing Keys or Values Simultaneously 

 To see all the keys in a dictionary in one go, we may 

write<dictionary>.keys ( ) and to see all values in one go, we may write 

<dictionary>.values( ), as shown below (for the same DICTIONARY d 

created above): 

 eg 

                    >>> 

d={“Vowell”:”a”,”Vowel2”:”e”,”Vowel3”:”I”,”Vowel4”:”o”,”Vowel5”:”u”} 

                      >>>d.keys( ) 

                      dict_keys([‘Vowel5’,’Vowel4’,’Vowel3’,’Vowel2’,’Vowel1’]) 

                      >>>d.values( ) 

                      Dict_values([‘u’,’o’,’I’,’e’,’a’]) 

  

 We can convert the sequence returned by Keys ( ) and values( ) functions by 

using list( ) as shown below: 

 >>>List(d.keys()) 

[([‘Vowel5’,’Vowel4’,’Vowel3’,’Vowel2’,’Vowel1’] 

>>>list(d.values( )) 

            [‘u’,’o’,’i’,’e’,’a’] 

 

Characteristics of a dictionary 

 Unordered Set 

 A dictionary is a unordered set of Key:value pairs. 

 We can not tell the order or position of Key:Value pairs in a 

dictionary as there is no index associated. 

 Not a sequence 

 Unlike a string, list and tuple, a dictionary is not a sequence 

because it is unordered set of element. 

 The sequences are indexed by a range of ordinal numbers. 

Hence , they are ordered , but a dictionary is an unordered 

collection. 

 Indexed by Keys, Not Numbers 

 Keys must be Unique 

 Each of the Keys within a dictionary must be unique.  

 Keys are used to identify values in a dictionary, there cannot be 

duplicate keys in a dictionary. 

 

 Dictionaries are Mutable 

 Internally Stored as Mappings 



“Multiple Ways of Creating Dictionaries” 

(i) Initializing a Dictionary 

 D = {1:’a’, 2:’b’, 3:’c’} 

(ii) Adding Key:Value Pairs to an Empty  Dictionary 

 

  D = dict(1=‘a’, 2=‘b’, 3=‘c’) 

     D        =>    {1:’a’, 2:’b’, 3:’c’} 

(iii) Creating a Dictionary from name and value Pairs 

 

  D= dict(zip((1,2,3),(‘a’,’b’,’c’)))  

     D        =>    {1:’a’, 2:’b’, 3:’c’} 

(iv) Initializing a Dictionary 

 

   D = dict((([1,‘a’], [2,‘b’], [3,‘c’]))) 

      D        =>    {1:’a’, 2:’b’, 3:’c’} 

 

Adding elements to a dictionary 

 

D = {1:’a’, 2:’b’, 3:’c’} 

       D[4] = ‘box’ 

       D     => {1:’a’, 2:’b’, 3:’c’,4 : ‘box’} 

Updating elements of a dictionary 

      D = {1:’a’, 2:’b’, 3:’c’} 

      D[2] = 10 

      D     => {1:’a’, 2:10, 3:’c’,4 : ‘box’} 

 

Nesting Dictionaries 

 We can even add dictionaries as Values inside a dictionary. 

  

 We can store a dictionary as a value only, inside a dictionary. 

Eg . 

 

Employees={‘John’:{‘age’:25,’salary’:20000},’Diya’:{‘age’:35,’Salary’:50,000}} 

 

for  key in Employees: 



 

      print(“Employee”, key, ’:’) 

 

      print(‘Age:’, str(Employees[key][‘age’])) 

 

      print(‘Salary:’,str(Employees[key][‘salary]))  

 

Output 

 

Employee John: 

   Age : 25 

   Salary: 20,000 

 

Employee Diya: 

   Age : 35 

   Salary: 50,000 

 

Updating/Modifying Existing Elements in a Dictionary 

 

 We can change value of an existing key using assignment as per following 

syntax: 

 Dictionary >[<key>]=<value> 

>>>Employee={‘name’:’John’,’salary’:10000,’age’:24} 

>>>Employee[‘salary’]=20,000 

>>>Employee 

{‘salary’:20000,’age’:24,’name’:’John’} 

 

In Dictionaries , the updation and addition of elements are similar in syntax. But for 

addition, the key must not exist in the dictionary and for updation, the key must exist 

in the dictionary. 

 

 

The element are being accessed from inner dictionaries, stores  

as values 



 

Deleting Elements from a Dictionary 

 

 To delete a dictionary element or a dictionary entry, i.e, a key:value pair, we 

can use del command. 

      D = {1:’a’, 2:’b’, 3:’c’} 

      del D[2]  

      D     => {1:’a’, 3:’c’} 

                         OR 

       D.pop( 2) 

       D     => {1:’a’, 3:’c’} 

 

Check for Existence of a Key 

 

a) ‘in’         :- <key> in <dictionary> 

 

b)  ‘not in’  :- <key> not in <dictionary> 

      D = {1:’a’, 2:’b’, 3:’c’} 

      2 in D        =>  True  

      4 not in D  =>  True 

 

The in and not in operator check for membership only in keys of the dictionary 

and not in values. 

 

Pretty printing a Dictionary 

 

D = {1:’a’, 2:’b’, 3:’c’} 

       import json  

        print(jsob.dumps(D, indent=2) ) 

        { 

           “1”  :  ‘a’, 

            “2” : ‘b’, 



             “3” : ‘c’ 

        }                     

 

 

Dictionary Functions & Methods 

 

 

a) len( ) :- It returns length of the dictionary. 

               Ex :- D = {1:’a’, 2:’b’, 3:’c’} 

                      len(D)       =>   3 

 

 

 b) clear( ) :- It removes all the elements from the dictionary. 

              Ex:- D= {1:’a’, 2:’b’, 3:’c’} 

                      D.clear( ) 

                      D       =>   {} 

 

Dictionary Functions & Methods 

 

Dict() :- this function is used to create a new dictionary from iterables and other 

dictionaries. Passing 

 

 no argument to dict( ) will create an empty dictionary{ }. 

Eg  

 

Dict(iterable) 

 

Eg  data=[[1,67.8],[2,75.5],[3,72.5]] 

 



D1=dict(data) 

 

Print(“Created dictionary is “) 

 

Print(d1) 

 

 

UPDATE( ) method :- 

 

 The update( ) method merges key:value pairs from the new dictionary into the 

original dictionary, adding or replacing as needed.  

 The items in the new dictionary are added to the old one and override any 

items already there with the same keys. 

 

D = {1:’a’, 2:’b’, 3:’c’} 

 

      D[2] = 10 

 

      D     => {1:’a’, 2:10, 3:’c’,4 : ‘box’} 

 

get() and items() function) 

 

 

 get( ) :- It gets the value with the given key from the dictionary. 

              Ex:- D= {1:’a’, 2:’b’, 3:’c’} 

                      D.get(1)    => ‘a’ 

                                       

items( ) :- It returns all the items in the dictionary as a sequence  

                     of (key, value) tuples. 

               Ex :- D = {1:’a’, 2:’b’, 3:’c’} 



                      lis = D.items( ) 

                      for x in lis : 

                               print (x)  

Output :-  (1,’a’) 

                 (2,’b’) 

                 (3,’c’)                                

 


