
Chapter 4 : Data Handling

Data types

 Data types are means to identify the type of data and associated operations of

handling it.

 Datatype can be many types eg character, integer, real, string etc.

 Built- in Core Data types

o Numbers (int , float, complex)

o String

o List

o Tuple

o Dictionary

Data types

 Data types are means to identify the type of data and associated operations of

handling it.

 Different umbers data type are

 Integers

o Integers (Signed)

o Booleans

o

 Integers :-

 Integers are whole numbers such as 5,39,1917, 0 etc

 They have no fractional parts.

 Integers are represented in Python by numeric values with no decimal point.

 Integers can be positive or negative e,g +12,-15,3000(missing + or-symbol

means it is positive number).



 Type of integers

 Integers (signed)---

 It is the normal integer representation of whole numbers.

 Integers in Python 3.x can be of any length, it is only limited by the

memory available.

 Unlike other languages, Python 3.x provides single data type(int) to store

any integer,

whether big or small.

 It is signed representation i.e the integers can be positive as well as

negative.

Booleans

 These represent the truth values False and True.

 Boolean values False and True behave like the values 0 and 1

respectively.

 When we convert Boolean value False and True to a string the string

‘False’ or ‘True’ are

Returned, respectively.

 The str() function converts a value to string.

Floating Point Numbers

 A number having fractional part is a floating-point number. For example

3.14159 is floating point number.

 The number 14 is an integer but 14.0 is a floating point number.

 The fractional numbers can be written in two form :

 Fractional Form(normal) eg 3500.75, 0.00005 etc

 Exponent Notation eg 3.50075E03, 0.5E-04, 1.479101E02 etc

 Floating –point numbers have two advantages over integers :

 It represent values between the integers.

 It represent a much greater range of values.

 Floating –point numbers have one disadvantage over integers

 Floating-point operations are usually slower than integer operations

>>> bool(0)

 False

>>>bool(1)

 True

>>> str(False)

 False

>>>Str(True)

 True

Eg 0.000000123

1.23 E-7 the letter E is called exponent

Complex number

 A complex number is a number of the form A+Bi where I is the imaginary number.

 A complex number is made up of both real and imaginary components.

 In complex number A+Bi A and B are real numbers and I is imaginary .

 If have a complex number z, where z= a+bi than a woulid be the real component and

b would

 represent the imaginary component of z eg real component of z= 4 + 3i is 4 and the

imaginary

 component would be 3.

Strings

 A python strings is a sequence of characters and each character can be

individually accessed using its index

 A string data type lets us to hold string data i.e any number of valid

characters into a set of quotation marks.

 In Python 3.x each character stored in string is a Unicode character i.e all

strings in Python 3.x are sequences of pure Unicode characters .

 Unicode is a system designed to represent every character from every

language.

 A strings can hold any type of known characters i.e letters , numbers and

special characters of any known scripted language.

 Eg of some legal strings

“abcd”, “1234”, ‘$%^&’,’????’

 0 1 2 3 4 5 6

7 8

C O M P U T E R S

a=0+3.1 j

b=1.5+2j

>>>c=0+4.5j

>>>d=1.1+3.4j

>>>c

4.5 j

>>>d

(1.1+3.4j)

>>>print(c)

4.5 j

>>>z=(1+2.56j)+(-4-3.56j)

>>>a

(-3-1j)

>>>z.real

-3.0

>>>z.imag

-1.0

Read only attributes z.real and z.imag

Subject

 - 9 -8 -7 -6 -5 -4 -3 -2

-1

Thus,

 Subject[0]=’C’ Subject[2]=’m’ Subject[6]=’e’ Subject[-1]=’s’ Subject[-7]=’m’

Subject[-9]=’C’

Note :--The index (also called subscript sometimes) is the numbered position of a

letter in the string. In Python, indices begin 0 onwards in the forward rirection and -1,-

2 …in the backward direction.

List

 A list in Python represents a list of comma-separated values of any datatype

between square brackets e.g following are some lists.

 Eg [1,2,3,4,5]

 [‘a’,’e’,’i’,’o’,’u’]

 [‘Neha’,102,79.5]

 >>>a=[1,2,3,4,5]

>>>a

[1,2,3,4,5]

To change first value in list

>>>a[0]=10

>>>a

[10,2,3,4,5]

To change first value in list

>>>a[2]=30

>>>a

[10,2,30,4,5]

Dictionary

 Dictionary data type is another feature in Python’s hat.

 The dictionary is an unordered set of comma-separated Key:value pairs within { } ,

with the

requirement that with in a dictionary, no two keys can be the same (i.e there are

unique keys

within a dictionary).

 Eg

 {‘a’:1, ‘e’:2, ‘i’:3 ,’o’:4, ‘u’:5}

>>>vowels ={‘a’:1, ‘e’:2, ‘i’:3 ,’o’:4, ‘u’:5}

>>>vowels[‘a’]

1

>>>vowels[‘u’]

5

Note : Dictionaries shall be covered in details in later chapter

IMMUTABLE TYPES

 The immutable types are those that can never change their value in place.

Eg integers , floating point numbers , Booleans , strings, tuples

 Immutability means that in the same memory address, new value cannot be stored

as and when we want.

 Eg p=5

 q=p

 r=5

 .. # will give 5,5,5

 …208 …..224 …..240 …..256 ….272

…..288

p q r

5 6 7 8 9 10

>>> id(5) >>> id(p) >>> id(q) >>> id(r)

 1457662208 1457662208 1457662208 1457662208

p=10

r=7

q=r

 …208 …..224 …..240 …..256 ….272

…..288

p q r

>>> id(10) >>> id(p) >>> id(7) >>> id(q)

>>>id(r)

 1457662288 1457662288 1457662240 1457662240

1457662240

>>>id(5)

1457662208

Now If we

>>>t=5

>>>id(t)

1457662208 here variables t has reference memory address same as initial

reference memory address of variable p when it has value 5.

Note :---

 In Python , variable-names are just the references to value-objects i.e data

values.

 The variable-names are instead made to refer to new immutable integer object.

 The variable-names do not store values themselves i.e they are not storage

containers.

5 6 7 8 9 10

MUTABLE TYPES

 The mutable types are those whose values can be changed in place.

 Only three types are mutable in python .

 Lists

 Dictionaries

 Sets (Not in syllabus)

>>>Chk=[2,4,6]

>>>id(Chk)

150195536

>>>Chk[1]=40

>>>Chk

[2, 40, 6]

id(chk)

150195536

Variable Internals

Objects :-

 Python is an object oriented language. Python calls every entity that stores

any values or any type of data as an object.

 An object is an entity that has certain properties and that exhibit a certain

type of behaviour eg integer values are objects – they hold whole numbers

only and they have infinite precision (properties); they support all

arithmetic operations(behaviour)

 All values are referred to as object in python. Similarly , we can say that a

variable is also an object that refers to a value.

 Every Python objects has three key attributes associated to it:

 The type of an object

 The type of an object determines the operations that can be

performed on the object. Built-in function type() returns the type of

an object.

 Eg >>> a=5

 >>>type(5)

Even after changing a value in the list Chk,

its reference memory address has remained

same. That means the change has taken in

place.

----The lists are mutable

 <class ‘int’>

 >>>type(a)

 <class’int’>

 The value of an object

 It is the data –item contained in the object. For a literal , the value is

the literal itself and for a variable the value is the data –item it(the

variable) is currently referencing.

 >>>a=4

 >>>print(4)

 4

 >>>print(a)

 4

 The id of an object

 The id of an object is generally the memory location of the object.

 Id returns the memory location of the object.

 Built –in function id() returns the id of an object eg

>>>id(4)

30899132

>>>a=4

>>>id(a)

30899132

Variable Internals

Objects :-

 Python is an object oriented language. Python calls every entity that stores

any values or any type of data as an object.

a=4

;

B=5

;

B=b-1

 30899132

 a

 30899120

b

 4

 5

 An object is an entity that has certain properties and that exhibit a certain

type of behaviour eg integer values are objects – they hold whole numbers

only and they have infinite precision (properties); they support all

arithmetic operations(behaviour)

 All values are referred to as object in python. Similarly , we can say that a

variable is also an object that refers to a value.

 Every Python objects has three key attributes associated to it:

 The type of an object

 The type of an object determines the operations that can be

performed on the object. Built-in function type() returns the type of

an object.

 Eg >>> a=5

 >>>type(5)

 <class ‘int’>

 >>>type(a)

 <class’int’>

 The value of an object

 It is the data –item contained in the object. For a literal , the value is the

literal itself
 and for a variable the value is the data –item it(the variable) is

currently referencing.

 >>>a=4

 >>>print(4)

 4

 >>>print(a)

 4

 The id of an object

 The id of an object is generally the memory location of the object.

 Id returns the memory location of the object.

 Built –in function id() returns the id of an object eg

>>>id(4)

30899132

>>>a=4

>>>id(a)

30899132

Operators

“The symbols that trigger the operation / action on data are called Operators,

and the data on which operation is being carried out i.e the objects of

operation(s) are referred to as operands.

Arithmetic Operators

Python use arithmetic operators for basic calculations like

 + addition

 -subtraction

 *multiplication

 / division

 // floor division

 % remainder

 ** exponentiation

Unary Operators

 The operators that act on one operand are referred to as Unary Operators.

 Unary + The operators unary ‘+’precedes an operand. The operand (the value

on which the

Operator operates) eg a=5 than +a means 5

 Unary- The operators unary ‘-’precedes an operand. The operand of the unary –

operator must have arithmetic type and the result is the negation of its operand’s

value eg if a=5 then –a means -5

Binary Operators

“ Operators that act upon two operands are referred to as Binary Operators.

 Addition Operator + eg 4 +2= result in 24

 Subtraction operator- eg 14-3= evaluates to 11

a=4

;

B=5

;

B=b-1

 30899132

 a

 30899120

b

 4

 5

 Multiplication *

The * operator multiplies the values of its operands.

 Eg 3* 4 evaluates to 12

 b*4(where b=6) evaluates to 24

 Division operator / in this / operator divides its first operand by the

second operand and always returns the result as a float value e.g.

4/ 2 evaluates to 2.0

100/2 evaluates to 10.0

 Floor Division operator //

 Python also offers another division operator //, which performs the floor

division .

 The floor division is the division in which only the whole part of the result is

given in the output and the fractional part is truncated.

 a=15.9 , b=3

a/b evaluates to 5.3

a//b will evaluate to 5.0

 Modulus operator %

 The % operator finds the modulus (i.e, remainder but pronounced as mo-

du-lo) of its first operand relative to the second. That is it produces the

remainder of dividing the first operand by the second operand.

 Eg 19 % 6 evaluates to 1, since 6 goes into 19 three times with a remainder

1.

Augmented Assignment Operators

 We know that in Python has an assignment operator =which assigns the value

specified on RHS to the variable/object on the LHS of =.

 Python also offers augmented assignment arithmetic operators , which combine

the impact of an arithmetic operator with an assignment operator,

 Eg a=a+b

We may write

 a+=b

 This operators can be used anywhere that ordinary assignment is used.

 Augmented assignment doesn’t violate mutability.

Relational Operators

 In the term relational operator , relational refers to the relationships that values (or

operands) can have with one another.

 The relational operators determine the relation among different operands.

 Python provides six (06) relational operators for comparing values(thus also

calledcomparison operators).

 If the comparison is true, the relational expression results into the Boolean value

True and to Boolean value False, if the comparison is false.

 < less than , <= less than or equal to , == equal to

 > greater than ,>= greater than or equal to , != not equal to

 a=3 , b=13

a<b will return True

Relational Operators with Arithmetic Operators

 a+5>c-2

Identity Operators

 There are two identity operators in Python is and is not.

 The identity operators are used to check if both the operands reference the

same object memory i.e the identity operators compare the memory locations

of two objects and return True or False accordingly.

Operator Usage Description

is a is b returns True if both its operands are pointing to same object(i.e
both referring to same memory location) , returns False otherwise.

is not a is not b Returns True if both its operands are pointing to different objects
(i.e both referring to different memory location return False
otherwise

 For eg

>>>a=235

>>>b=240

>>>c=235

>>>a is b

False

>>>a is c

True

Equality (==) and Identity (is)---important Relation

 When the is operator returns True for two variables, it implicitly means that

the equality operator will also return True.

 That is , expression a is b as True means that a==b will also be True, always.

Exception

Logical Relational Operators

 Python provides three logical operators to combine existing expressions

 OR, AND, NOT

 OR –Operator evaluates to True if either of its (relational) operands evaluates

to True;

False if both operands evaluate to false.

 AND operators evaluates to True if both of its (relational)operands evaluate to

True; False if either or both operands evaluate to false.

 NOT operator returns always a Boolean True or False.

>>> a,b=235,235

print(a,b)

>>>a is b

True

>>>a==b

>>>True

>>>s1=’abc’

>>>s2=input(“Enter a string:”)

Enter a string :abc

>>>s1==s2

True

>>>s1 is s2

False

>>>s3=’abc’

s1 is s3

True

The reson behind this behaviour is that

there are a few cases where Python creates

two different objects that both store the

same value.

 Expressions- An expression in Python is any valid combination of Atoms and

operators.

Atom- An atom is something that has a value. Identifiers , literals, strings, list,

tuples , sets, dictionaries.

Expression is composed of one or more operations.

 Arithmetic expression- If an expression formed using arithmetic operators , it is an

arithmetic expression. Arithmetic expressions can either be pure integer expression

or pure real expression, sometimes a mixed expression can also be formed which is

a mixture of both.

 Relational (or logical)expression- The expressions that result into false or true

are called Boolean expressions. The Boolean expressions of constants, variables

and logical and relational operators.

 Type conversion- The process of converting one predefined type into another is

called conversion.

 Implicit type conversion- It is conversion performed by the compiler without

programmer’s intervention.

 Explicit type conversion Is user-defined that forces an expression to be of specific

type. The explicit conversion of an operand to a specific type is called Type Casting.

Module:-

 A python module is a file which contains some variables. And constants ,

some functions, objects etc. defined in it, which can be used in another Python

programs by importing it.

 Other than built-in functions, Python makes available many more functions

through modules in its standard library.

 Python standard library is a collection of many modules for different

functionalities e.g module time offers time related functions; module string

offers functions for string manipulations and so on.

Working with math module

 >>>import math

>>>math.pow(3,4)

81.0

Working with random module

 This module provides random –number generators.

 A random number in simple words means – a number generated by chance i.e

randomly.

 The most common random numbers generator functions in random module are :

random() It returns random floating point number N in the
range[0.0,1.0], i.e 0.0<=N<1.0. the number always
be less than 1.0(only lower range-limit is inclusive.

Randint(a,b) It returns a random integer N in the range (a,b)i.e ,
a<=N<=b
(both range –limits are inclusive). It always generate
the integer.

Randrange(,start>,<stop>,<step>) It returns random numbers from range start…stop
with step value.

>>>print(random.random())

>>>print(random.randint(15,35)) >>>print(random.randrange(11,45,4)

Using statistics Module

 The statistics module of the Python Standard Library provides many statistics

functions such as mean(), median() , mode() etc.

statistics.mean(<seq>) It returns the average value of the set/sequence
of values passed

statistics.median(<seq>) It return the middle value of the set/sequence of
values passed.

Statistics.mode It returns the most often repeated value of the
set/sequence of values passed.

>>> import statistics

>>>seq=[5,6,7,5,6,5,5,9,11,12,23,5]

>>>statistics.mean(seq)

8.25

>>>statistics.median(seq)

6.0

>>> statistics.median(seq)

 5

