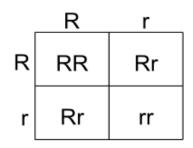

MENDEL'S DIHYBRID EXPERIMENT

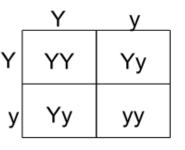
Presented by Dr S Deka

Cross of Parent Generation

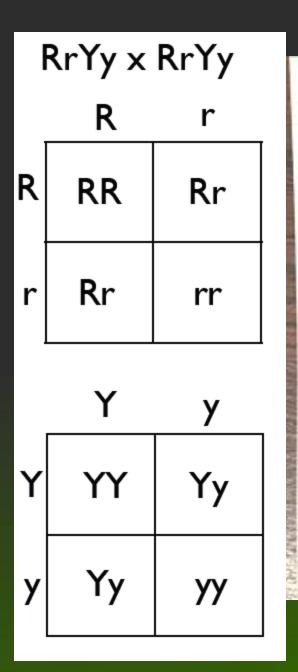


- Round/Yellow: 9
- Round/green: 3
- wrinkled/Yellow: 3
- wrinkled/green: 1

9:3:3:1 phenotypic ratio


Genotypic ratio: 1:2:1:2:4:2:1:2:1

Round = R Wrinkled = r


1/4 RR 1/2 Rr 1/4 rr

Yellow = Y Green = y

1/4 YY 1/2 Yy 1/4 yy

 $\frac{1}{4} YY \longrightarrow 1/16 RRYY \longrightarrow 1/16 RRYY \\ \frac{1}{4} YY \longrightarrow 1/8 RRYy \longrightarrow 2/16 RRYy \\ \frac{1}{2} Yy \longrightarrow 1/8 RRYy \longrightarrow 2/16 RRYy \\ \frac{1}{4} yy \longrightarrow 1/16 RRyy \longrightarrow 1/16 RRyy \\ \frac{1}{4} YY \longrightarrow 1/8 RrYY \longrightarrow 2/16 RrYY \\ \frac{1}{2} Yy \longrightarrow 1/4 RrYy \longrightarrow 4/16 RrYy \\ \frac{1}{4} yy \longrightarrow 1/8 Rryy \longrightarrow 2/16 Rryy \\ \frac{1}{4} YY \longrightarrow 1/16 rrYY \longrightarrow 1/16 rrYY \\ \frac{1}{4} YY \longrightarrow 1/8 rrYy \longrightarrow 2/16 rrYy \\ \frac{1}{4} yy \longrightarrow 1/8 rrYy \longrightarrow 2/16 rrYy \\ \frac{1}{4} yy \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{4} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{4} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy \\ \frac{1}{1} Y_{1} YY \longrightarrow 1/16 rryy \longrightarrow 1/16 rryy$ \\

IRR	*	1 44		IRRYY	
		244	;	2 RRYY	
		1 44	-	1 RRYY	
2 RC	*	144	0 0	2 RCYY 4 RrYy	
				2 Reyy	
۱،۲	*			2 crys	
		1 77	1	- Ireyy	

Applications!!

Example 1: A woman homozygous for type B blood marries a man who is heterozygous type A. What will be the possible genotypes and phenotypes of their children?

Genotype	Blood Type	
l ^A i	А	
I ^A I ^A	А	
I ^B I ^B	В	
I ^B i	В	
I ^A I ^B	AB	
i i	0	

Example 1: A woman homozygous for type B blood marries a man who is heterozygous type A. What will be the possible genotypes and phenotypes of their children?

 IBIB
 X
 IA
 IB
 IB

 IBIB
 IBIB
 IB
 IB

 IA
 IAIB
 IAIB
 IAIB

 iO
 IBiO
 IBiO
 IBiO

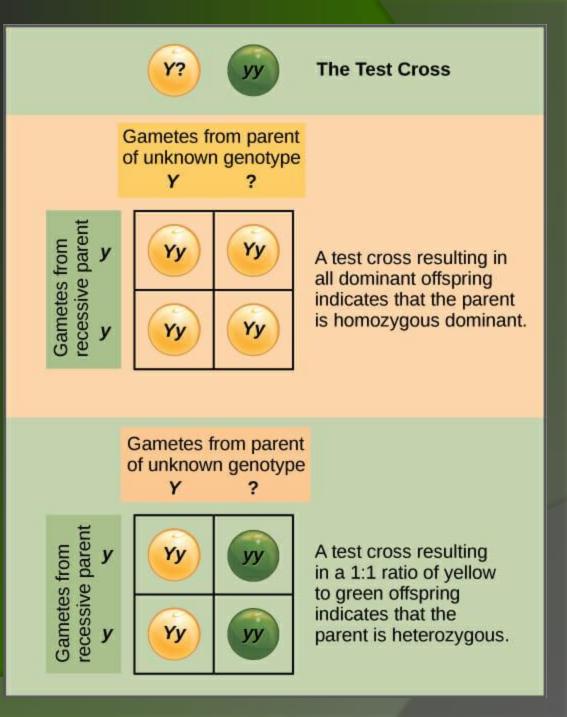
Genotypic = $2 I^{A}I^{B}$: $2 I^{B}i^{O}$ Phenotypic = 2 AB : 2 B

Rh Factor

- There are 2 different alleles for the Rh factor known as Rh+ and Rh-.
- Someone who is "Rh positive" or "Rh+" has at least one Rh+ allele, but could have two. Their genotype could be either Rh+/Rh+ or Rh+/Rh-. Someone who Rh- has a genotype of Rh-/Rh-.

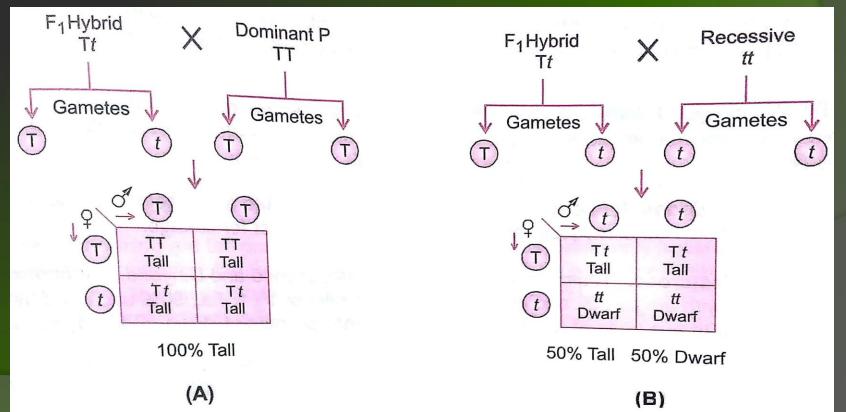
Rh Factor	Possible Genotypes
Rh⁺	Rh ⁺ /Rh ⁺ Rh ^{+/} Rh ⁻
Rh ⁻	Rh ^{-/} Rh ⁻

Rh Inheritance


Rh inheritance is independent of A, B, O blood type.

Rh factor	Possibl	e gen	otypes
Rh⁺	Rh⁺/Rh⁺	OR	Rh⁺/Rh⁻
Rh⁻	Rh ⁻ /Rh ⁻		

Parent 1 Rh allele	Parent 2 Rh allele	Child's phenotype
Rh+	Rh+	Rh+
Rh-	Rh+	Rh+
Rh-	Rh-	Rh-


Test Cross

In genetics, a test \mathbf{O} cross, first introduced by Gregor Mendel, involves the breeding of an individual with a phenotypically recessive individual, in order to determine the zygosity of the former by analyzing proportions of offspring phenotypes.

Back Cross

Substitution Backcrossing is a crossing of a hybrid with one of its parents or an individual genetically similar to its parent, in order to achieve offspring with a genetic identity which is closer to that of the parent.

